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 review review

The Development and Regulation of Legume 
Nodulation

Many legumes have evolved to establish a symbiosis with nitro-
gen-fixing soil-bacteria collectively known as rhizobia (includ-
ing the genera Azorhizobium, Allorhizobium, Bradyrhizobium, 
Mesorhizobium, Rhizobium and Sinorhizobium). Rhizobia invade 
the roots of compatible legume plants leading to the develop-
ment of specialized root structures called nodules.1-4 Within 
these nodules, the nitrogenase enzyme complex of rhizobia 
reduces atmospheric nitrogen, an unusable form of nitrogen for 
plants, into ammonia, which the plant utilizes for growth and 
development.5,6

Nodule formation and nitrogen fixation are energy expensive 
and are therefore tightly regulated to ensure a balance between 
nitrogen acquisition and energy expenditure. One internal con-
trol mechanism of the plant is the Autoregulation of Nodulation 
(AON), a regulatory process acting via long distance signal-
ing.1-3,7-9 AON is initiated during early nodule development by 
the production of a rhizobia-induced signal in the root, which 
is mobilised to the shoot.10 In soybean, GmRIC1 and GmRIC2 
of the CLAVATA3/ESR-related (CLE) family of peptides, have 
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Legumes represent some of the most important crop species 
worldwide. They are able to form novel root organs known as 
nodules, within which biological nitrogen fixation is facilitated 
through a symbiotic interaction with soil-dwelling bacteria 
called rhizobia. This provides legumes with a distinct advantage 
over other plant species, as nitrogen is a key factor for growth 
and development. Nodule formation is tightly regulated by 
the plant and can be inhibited by a number of external factors, 
such as soil pH. This is of significant agricultural and economic 
importance as much of global legume crops are grown on low 
pH soils. Despite this, the precise mechanism by which low 
pH conditions inhibits nodule development remains poorly 
characterized.
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been identified as strong candidates for this signal.11-14 Similar 
peptides involved in AON have also been identified in Lotus 
japonicus and Medicago truncatula.15,16 Upon perception of the 
rhizobia-induced signal in the shoot, a novel factor called the 
Shoot-Derived Inhibitor (SDI) is produced and is predicted to be 
transported down to the root where it acts to inhibit continued 
nodule development.17,18

External factors can also regulate legume nodule numbers. 
For example, the plant hormone ethylene is a strong inhibitor 
of nodulation and is produced following stress, enabling the 
plant to reduce nodule production when growing conditions are 
sub-optimal.19 Many nitrogenous compounds are also strong 
inhibitors of nodule formation. Legume plants have evolved a 
mechanism to detect nitrogenous compounds in the soil, such 
as nitrate and ammonium, which enables them to reduce nod-
ule development when ample sources of nitrogen are already 
available.2,9 The presence of these nitrogenous compounds in 
the soil triggers the production of a CLE peptide signal, called 
GmNIC1 in soybean, which is highly similar to GmRIC1/2 in 
AON.2,14 However, this nitrogen-sensing process acts locally in 
the root, as opposed to AON, which acts systemically through 
the shoot.14

Factors such as soil composition, water content, temperature 
and pH can also influence plant and rhizobia growth,20,21 and 
nodule establishment.22,23 Indeed, soil acidity alone is responsible 
for significant losses in global legume production, resulting from 
impaired plant and rhizobia growth, in addition to decreased 
nodule development and nitrogen fixation. The following review 
highlights the effects low soil pH has on this critical legume-
rhizobia symbiosis.

Plant Growth in Low pH Soil

Over 1.5 Gha of the world’s soils are acidic (pH < 5.5; Fig. 1), 
with up to 40% of arable land affected by soil acidity.24,25 Low 
soil pH is often caused by poor nutrient cycling, soil leaching 
and the acidifying effects of nitrogen fertiliser.25,26 They are 
responsible for yield losses of 50% or more in wheat and barley 
crops, as well as legume crops, such as lentil, bean and pea.27-30 
Interestingly, legumes tend to acidify soil to a greater extent than 
many other species.31,32

Elevated levels of toxic anions in low pH soil have compound-
ing effects on plant growth. Plant apoplasts are weak cation 
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physical damage than mature root regions.36 Al3+ toxicity inhibits 
root cell division and elongation36 and decreases macronutrient 
availability and retention by binding pores in the soil. Al3+ also 
inhibits cation uptake by outcompeting Ca2+ and Mg2+ loading 
in the apoplast.37

Several adaptation mechanisms enable plants to survive in low 
pH soils. The impacts of low nutrient availability are reduced by 
slowing their growth rate, lowering their nutrient use efficiency 
(the amount dry matter produced per unit nutrient)38 and low-
ering their internal nutrient demand and recirculation of min-
eral nutrients.20 Adaptation to toxic ions is achieved through 

exchangers that require Ca2+ and Mg2+ loading to increase the 
uptake of cations such as Mg2+, Zn2+, Mn2+ and Ca2+.20 High 
H+ and Mn2+ concentration in low pH soil outcompetes Ca2+ 
and Mg2+ loading and also creates a steep concentration gradi-
ent between the rhizodermal cell cytoplasm and the rhizosphere.33 
This favors anion uptake (through the apoplast) over the uptake 
of Mg2+, Ca2+ and K+.33

High Al3+ concentration is identified as the main limiting fac-
tor on plant viability in 67% of all low pH soils.34 Aluminum 
hydrolyzes in low pH solutions (pH < 5) to form the toxic triva-
lent form, Al3+, which is prevalent in acid soils.35 Root apices are 
the primary sites of Al3+ accumulation and therefore suffer more 

Figure 1. world soil pH distribution and the top 10 global soybean producers (quantity; metric tonnes; FAOSTAT, 2010). As is the case with many 
legume crops, soybean production is predominantly located in regions of low pH soil. Map adapted from: FAO-UNeSCO Soil Maps of the world, 2007.
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pH also significantly reduces processes occurring downstream of, 
or in parallel to, root-hair infection. This includes the expression 
of early nodulation genes,71 initial cell division events and primor-
dia establishment. However, the precise mechanisms resulting in 
these reductions remain unclear.60 The recent identification of a 
systemic root-to-shoot-to-root pathway acting to regulate nodula-
tion in response to acidic soil conditions provides a new layer to 
the complexity of this regulatory framework.71

Improving Nodulation Under Low pH Soil Conditions

Conventional methods to improve nodulation in low pH soils 
have addressed plant or rhizobia growth individually. The sim-
plest approach to resolve low soil pH is to raise it to a more suit-
able level. Liming is a common means of raising soil pH; applying 
CaCO

3
 to bind excess H+ while at the same time releasing Ca2+ 

which can be used as a nutrient.72 However, poor mixing of 
CaCO

3
 with soil73 and over-liming can reduce crop yield,73 mean-

ing liming is often ineffective.
Plants have also evolved mechanisms to help raise the pH of 

the soil immediately surrounding their roots. Rhizosphere pH can 
be modified through root secretion of the alkaline anions OH–, 
HCO74-75 and metal ion chelators.76 Aluminum-tolerance in cereals 
is well characterized and involves Al-exclusion through the excre-
tion of mixtures of the organic acids citrate, malate and oxalate to 
chelate Al3+ ions and detoxify the rhizosphere.77,78

External genistein (a soybean isoflavone) and purified NF appli-
cation partially restores nodulation by improving plant-rhizobia 
signaling and root hair infection.67,79 However, this is expensive and 
not viable for agriculture. Other approaches, including applying 
acid-tolerant strains of rhizobia, have also been shown to improve 
symbiotic performance.41,53,80-83 To date, the most effective means 
to improve nodulation under low soil pH conditions is to use acid-
tolerant legume cultivars.84-88 Some reports have concluded that 
proper nodulation can be achieved in acidic growth conditions 
as long as one of the symbionts is acid-tolerant.45 However, poor 
nodulation can occur even in the presence of a healthy rhizobia 
population,28,47 and in many cases the host legume variety is key to 
establishing the symbiosis in a low pH environment. Nevertheless, 
with all of these approaches, nodulation is typically only slightly 
improved. This can often be attributed to an indirect result of 
improved plant and rhizobia growth, rather than acid-tolerant 
nodulation.23,24,85,87 However, it also indicates that regulatory com-
ponents, aside from direct, local pH-induced inhibitory factors, are 
involved in suppressing nodulation in acidic soil.

Recent Advances in Discovering the Molecular 
Mechanisms of Acid-Regulation of Nodulation

Though highly prevalent and economically significant, the 
molecular mechanisms inhibiting legume nodulation by low soil 
pH have been poorly defined. Recently, Lin et al. (2012) demon-
strated, through split-root and grafting studies using an AON-
deficient mutant line of soybean, that a systemic, shoot-controlled 
and GmNARK-dependent mechanism was key to facilitating the 
inhibitory effect of low soil pH on legume nodulation. Inhibition 

restricting influx at the plasma membrane and at sensitive zones in 
the root, or by compartmentalisation of toxic ions in cell walls.39,40

Rhizobia Growth in Low pH Soil

Rhizobia growth, survival and abundance, in addition to their 
competitiveness in nodulation, are highly influenced by soil pH.41-

45 Increased H+ concentration and increased solubility of the toxic 
metal ions Al3+, Cu2+ and Mn2+ are the primary causes of inter-
cellular pH instability leading to growth inhibition in low pH 
soils.46,47 Acid tolerant strains of many rhizobia species have been 
isolated,43,47 with pH tolerance often being facilitated by proton 
exclusion,48 increased cytoplasmic buffering49 and acid-shock 
response mechanisms.46

Strain-specific symbiotic potency varies at different soil pH 
levels, where strains that are outcompeted under normal pH con-
ditions (pH > 5.5) become dominant under low pH (pH < 5.5) 
conditions.50,51 Bradyrhizobium sp are generally more acid-toler-
ant than most Rhizobium sp.41,52 Although few rhizobia thrive 
at pH < 5,47,53 certain strains of R. tropici and R. loti are highly 
acid-tolerant.28,47,54,55

Inhibition of Nodulation by Low pH Conditions

Legumes species differ in their nodulation and growth response to 
acidic soil.22,24,56 Generally, nodule formation is more sensitive to 
soil acidity than other aspects of plant growth.22 Species, such as 
M. sativa, are highly sensitive to acidic growth conditions, whereas 
others, including Lotus tenuis, are more tolerant.42 In addition, 
a number of varieties isolated from the highly-acidic Brazillian 
Cerrado and Caatinga biomes exhibit acid-tolerant nodulation, 
including certain species of Lupins and Mimosa.57,58

In low pH soil, nodule formation has been reported to be 
reduced by > 90% and nodule dry weight by > 50% in spe-
cies such as soybean, pea, cowpea, Medicago and Lucerne, with 
both determinate- and indeterminate-nodule forming species 
affected.22,59-62 In bean, low soil pH is reported to reduce the num-
ber, ultrastructure and weight of nodules, in addition to the nitro-
genase activity.30 Indeed, nitrogen fixation is typically reported to 
be reduced in acidic soil, with both temperate and tropical spe-
cies being affected.24,63 Molybdenum deficiency in low pH soil20 
further hinders nitrogen fixation, as it is a key component of the 
nitrogenase enzyme complex.64 The loss of nitrogen acquisition is 
often overcome by fertilisation, as is reflected by the fact that 75% 
of the 3.6 million tonnes of nitrogen fertiliser used worldwide 
each year are applied in major soybean production regions, where 
low pH soils persist (International Fertilizer Industry Association; 
www.fertilizer.org; Fig. 1).

Low pH conditions disrupt the signal exchange between the 
host plant and microsymbiont.50 Reduced plant flavonoid secre-
tion50 decreases rhizobia Nod gene induction and restricts NF 
and Nod metabolite excretion.65,66 The reduction in NF signaling 
results in the failure of downstream events, such as root hair defor-
mation and curling.67,68 Low pH conditions have also been shown 
to affect rhizobia attachment to root hairs45,69 and root colonisa-
tion,70 leading to reduced nodule formation. Furthermore, low soil 
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Conclusions

Low pH nodulation studies have largely been based on observ-
ing symptomatic effects. Further characterization using more 
direct molecular genetic approaches are now required to establish 
a more complete understanding of the mechanisms of low pH 
inhibition of nodulation. Findings will enable more targeted and 
practical approaches that could help to reduce this widespread 
agricultural problem.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

was induced early in nodule ontogeny, between 12–96 h post-
inoculation with Bradyrhizobium japonicum.71 Furthermore, 
the transcript abundance of known early nodulation genes 
was downregulated in response to acid stress, including being 
systemically downregulated in split root plants.71 This break-
through in identifying one of the mechanisms responsible for 
low soil pH inhibition of legume nodulation has helped to estab-
lish and highlight the complexity of this regulatory process. 
Indeed, it suggests that soil acidity not only effects the growth 
and development of rhizobia bacteria and legume plants, but 
also acts to directly inhibit the formation of nodule structures in 
both a local22,60,70 and systemic71 manner.
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